
The use of Blockchain technology to achieve web
scale agent-based simulations

Conor Deegan1[0000−0001−7835−2696]

School of Computer Science, University College Dublin, Dublin, Ireland
conor.deegan@ucdconnect.ie

Abstract. The paper explores the use of Blockchain technology to achieve
web scale agent-based simulations. Agent-based simulations are used in
many domains including logistics [16], biology [20], ecology [28], and so-
cial science [34]. However, research has shown more complex models,
such as modelling real world simulations, cannot be captured by a single
model on a single machine [25]. Current research to solve this problem
includes the use of Hybrid Simulations (HS) which combines multiple
interconnected sub-simulations [17], and the work in [11] which builds
upon this further by exploring the use of loosely-coupled microservices
to implement HS at scale. There has been a recent increase in popular-
ity of blockchains, driven by networks such as Bitcoin and Ethereum.
Blockchains, such as the Ethereum blockchain, come equipped with a
built in Turing-complete programming language which can be used to
create decentralised applications which are executed publicly on a global
network of decentralised nodes. This thesis aims to build a proof-of-
concept agent-based simulation which runs on this decentralised global
network and achieves a scale similar to production grade web applica-
tions. A toy traffic simulation problem is created where agents commute
from their home to work across a network consisting of buildings, roads,
and junctions. Each entity in the simulation is implemented using Solid-
ity smart contracts. This proof-of-concept simulation demonstrates how
blockchain technology can be used to facilitate complex agent-based sim-
ulations, which can be integrated with existing centralised simulations
as needed.

Keywords: Agent-based modelling · Blockchain · Distributed comput-
ing

1 Introduction

Agent-Based Modelling (ABM) is a bottom-up approach to studying the be-
haviour of complex systems [36]. Systems are modelled as a collection of individ-
ual agents where each agent encapsulates private state and can make decisions
based on a set of rules [5]. The behaviour of the system emerges through the
decisions made by these agents and their interactions with one another. ABM
has been applied in many domains including logistics [16], biology [20], ecology
[28], and social science [34].



2 C. Deegan

One of the key challenges in ABM is the ability to model systems of increasing
complexity [11]. Work has shown that more complex ABM cannot be captured
by a single model on a single machine [25]. Current solutions to this scaling
problem include the use of Hybrid Simulation (HS) which combines multiple
interconnected sub-simulations where each simulation may be implemented using
different modelling techniques [17]. The work in [11] builds upon this further by
exploring the use of loosely-coupled microservices to implement HS at scale.

In recent years, there has been increasing concerns around centralised web
services in areas such as privacy, governance, surveillance, and security. This
has triggered the emergence of new distributed technologies such as blockchain
technology (BCT) [41]. Blockchains, such as the Ethereum blockchain [44], come
equipped with a built in Turing-complete programming language which can be
used to create decentralised applications which are executed publicly on a global
network of decentralised nodes.

This thesis explores the use of BCT to achieve web scale agent-based simula-
tions. It concludes with an implementation and description of a proof of concept
ABM running on BCT.

2 Agent-Based Simulation

Agent Based Modelling is an established simulation technique that has been
applied successfully in a variety of domains. A detailed literature review of ABM
has been presented separately. This section reviews the findings discussed within
the literature review in the context of the work presented in this thesis.

A key challenge in the area of ABM is the ability to model systems of increas-
ing complexity [11]. Although there are a range of approaches to implementing
ABMs [1], they have been traditionally viewed as a desktop computer style of
exercise where simulations are executed on a single machine [11]. However, work
has shown that desktop agent based models do not scale to what is required
for extremely large applications in the study of realistic complex systems [2]
[25]. Although an in-depth review of the existing literature can be found in the
preceding literature review, this section will give a brief overview of the most
pertinent literature discussed.

Components of ABMs that contribute to slower execution times and memory
issues when scaling to larger simulations include; a larger number of agents,
model design, and computational complexity of the agents behaviour [10]. This
can lead to model simplifications until the execution time is acceptable on a
single machine [40].

ABMs which push the limits of resources due to their large numbers of
agents or their complexity may be referred to as ‘Massively Multi-agent Sys-
tems (MMAS)’ or ‘Massive Agent-based Systems (MABS)’ [24] [23].

Current state of the art solutions for scaling agent-based simulations include
the use of Hybrid Simulation [17]. Hybrid Simulation combines multiple inter-
connected sub-simulations where each simulation may be implemented using



Dissertation 3

different modelling techniques [31]. Within the simulation community, two main
approaches have emerged; Distributed Simulation and Cloud Based Simulation.

The Distributed Simulation (DS) approach focuses on the development and
deployment on high-performance computing clusters, leading to tools such has
RePAST HPC [9]. However, these implementations are typically bespoke and
tailored to specific tasks [39]. Thus, a DS approach does not solve issues such as
interoperability and model reuse that are required for large-scale ABM.

Another criticism of DS is the cost and availability of computing clusters.
This has led to the proposal of Cloud Based Simulation (CBS) [39], which focuses
on the deployment of simulations in the cloud using microservices [40].

However, research has shown that there is a lack of suitable tools and frame-
works for integrating ABMs with other technologies [36]. Interoperability is a
particular issue leading to many existing Hybrid Simulations being built using
a single tool [17].

The work in [11] argues that Hybrid Simulations should not be built on mono-
lithic architectures but instead implemented as loosely-coupled microservices in
a manner that ensures scalability. They highlight that the use of microservices to
achieve greater scale in ABM allows for reusable components, interoperability,
polyglot development, and deployment at scale. They propose that each sub-
simulation is encapsulated as a microservice that uses REST for communication
and can be integrated into larger simulations that are not agent-based. This has
been demonstrated using Multi-Agent Microservices (MAMS) in the ASTRA
agent programming language [43] [35] [12] [14]

This thesis will build upon the research in [11] and explore the use of smart
contracts to achieve greater scale in ABM.

3 Blockchain Technology

At it’s core, a blockchain is a distributed peer-to-peer (P2P) network which
allows for transactions to take place in a fully trust-less environment. It does this
through the use of digital signatures, a digital ledger to maintain the network
state, and some form of consensus algorithm used to achieve agreement about
this state. Blockchains, such as the Bitcoin network, solve a problem with digital
cash known as the double spending problem - a potential flaw in a digital cash
scheme in which the same single digital token can be spent more than once
[33]. Other blockchains, such as the Ethereum network, extend this further by
providing a blockchain with a built in programming language. This can be used
to create programs that run across the distributed network. In the Ethereum
ecosystem, these are known as smart contracts [44].

Rather than describing the Ethereum network as a distributed ledger, a more
suitable description for the network would be a distributed state machine. This
state machine consists of a large data structure which holds all of the Ethereum
accounts and balances and is also capable of executing compiled smart contract
machine code. The rules which dictate how this state changes from block to
block are defined by the Ethereum Virtual Machine [44].



4 C. Deegan

At the time of this thesis, the consensus algorithm used by the Ethereum
main network is a Proof of Work (POW) algorithm. As a result of this, the
Ethereum main network is currently limited to just fifteen transactions per sec-
ond (TPS). However, upcoming updates to the main network will switch the
consensus algorithm to a Proof of Stake (POS) algorithm, resulting in an in-
crease to over 100,000 TPS. This increase in TPS will result in the Ethereum
network being able to handle similar throughput as many centralised production
systems [29]. Some Ethereum test networks and Layer 2 solutions already use
a POS consensus algorithm. The remainder of this thesis will assume that the
underlying network uses POS.

3.1 Scale

The Ethereum network is a P2P network in which [27] estimated there to be
approximately 300,000 nodes on the network at the time of their research. Each
of these nodes acts as a server running the EVM. Combined with the increase in
throughput obtained by the POS consensus algorithm, the Ethereum network
allows for cost-effective scale without the need for application developers to
manage a large cluster of servers. This provides a good argument for leveraging
existing open P2P protocols for efficiently running applications at scale.

3.2 Interoperability

Blockchain interoperability is emerging as one of the crucial features of blockchain
technology [4]. Given that blockchains, such as the Ethereum network, are pub-
lic by default, application developers can extend existing smart contracts and
build upon current infrastructure provided their smart contracts are constructed
appropriately. The Ethereum community recommends that, for the purposes of
interoperability, smart contracts follow strict interface guidelines. Examples of
the effectiveness of interoperability offered by the blockchain can be seen with
the ERC-20 fungible token [6], and ERC-721 non-fungible token [18] standards.

3.3 Traceability

BCT provides an immutable and permanent history of transactions [21]. As such,
blockchains provide an accurate historic account of events that cannot be altered.
Every function call and smart contract execution is recorded by transaction logs
on chain and can be used to learn more about the state of the system at any
previous point in time. When applied to ABM, this offers traceability and model
recreation at any point in a simulations life cycle.

3.4 Blockchain Technology and Agent-based Simulation

There exists a body of research which explores the benefits of BCT for ABM.
However, limited research could be found exploring the use of blockchain tech-
nology to achieve scale in agent-based simulations. Most studies were concerned



Dissertation 5

with other affordances offered by BCT such as trust [7] [3] [15] [41], data im-
mutability [15] [3] [41], mitigating single-points of failure [3], cost [3], and security
[37] [7]. This thesis will focus on three core elements of BCT and their possible
benefits for ABM; scale, interoperability, and traceability.

4 A New Approach

In this thesis, ABM architectures are implemented as loosely-coupled smart con-
tracts in a manner that ensures scalability; given the affordances of the underly-
ing distributed network, traceability; given the immutable nature of BCT, and
interoperability; given the network is public by default. Table 1 shows similar-
ities which can be drawn between smart contract programs and microservices
[42]. As such, this new ABM architecture can operate solely on BCT or as part
of a hybrid system building on the work in [11].

This architecture can also be compared to the idea of a Metaverse. [26] defines
the Metaverse as a gigantic, unified, persistent, interconnected web of virtual
environments. Each environment node can be realised through different tech-
nologies such as Virtual Reality, Augmented Reality, centralised applications or
indeed decentralised applications [32]. The Metaverses described thus far consists
of human controlled avatars operating in a digital universe. However, another
body of Metaverse research is concerned with creating a digital twin of our uni-
verse and simulating events to study the effects they might have in our reality
[38] [22]. Large scale simulations can be developed to study the spread of dis-
eases, evacuation events, traffic patterns etc. In order to model reality effectively,
clear guidelines must be developed which document how different nodes of the
environment can be connected, how agents in those environments can interact
with their surroundings, and how information can be extracted from these simu-
lations to study the results. Given the public interoperable nature of BCT, once
these guidelines are enforced, simulations could become open allowing different
environment nodes to be added to the simulation by anyone. This would result
in a truly decentralised digital twin of our universe used to simulate events and
study their effects.

The associated code for this thesis implements a possible starting point for
this model. Following is an outline of each of its components.

Agents Generally, there exists two approaches when applying BCT to ABM
and Multi-Agent Systems (MAS). The first approach uses traditional centralised
agents running on a centralised machine where the blockchain is used as an im-
mutable ledger and trusted data store. The second approach is more integrated,
the agents directly interact with, or are part of, the blockchain technology. [8]
describe these two approaches as ”agent-vs-blockchain” - where the agent and
blockchain run side by side, allowing the agents to exploit blockchain services
when needed and ”agent-to-blockchain” - where the effort is focused on incor-
porating agent-oriented models and technologies directly into the blockchain.
The approach in this thesis follows the ”agent-to-blockchain” approach where
all elements of the model run on BCT.



6 C. Deegan

Principle Microservices Smart Contracts

Bounded Context A microservice repre-
sents a single piece of
business functionality.

A smart contract typ-
ically implements a
simple autonomous task
with a well defined
purpose.

Size Microservices should be
small enough to ensure
maintainability and ex-
tensibility

Given gas costs, smart
contracts are typically
small in size. They offer
extensibility through in-
heritance.

Isolated State Sharing of state informa-
tion is minimised across
services.

Smart contract state is
maintained privately and
can be constructed in
such a way that shar-
ing of state information
across services in mini-
mal.

Distribution Services are spread
across multiple nodes.

Services are spread
across multiple nodes.

Elasticity The application is de-
signed to allow addition
and removal of required
resources at runtime.

Not applicable as smart
contract execution hap-
pens across the entire
distributed network by
default.

Automated Man-
agement

Management operations
like failure handling and
scaling are automated.

Not applicable, although
failure can be accommo-
dated within the logic of
the contract.

Loose Coupling Systems are decomposed
into loosely coupled sets
of highly cohesive colo-
cated services.

Systems are decomposed
into loosely coupled
smart contracts dis-
tributed across the
entire network

Table 1. Comparing Smart Contracts to Microservices

In this new architecture, agents will be implemented using smart contracts.
Agents will have an internal state and will make decisions based on specific
rules, internal beliefs, and input from their surroundings. The agents will be
encapsulated entities and will be capable of flexible autonomous actions in order
to meet their design objectives. Thus, these agents follow the popular definition
of an agent proposed by Wooldridge and Jennings in [45]. Given the persistent



Dissertation 7

nature of BCT, agents can be added or removed at any point in time during the
simulation. This offers greater freedom where more agents can be added after
the simulation begins.

Environment The environment moves from a single centralised environment to
a distributed environment whereby different aspects of the environment exist as
distributed nodes within the network. Similarly to agents, environment nodes
are realised through smart contracts and can be added or removed in realtime.
This results in a dynamic environment that is not limited in size.

Service Lookup Given the distributed nature of this architecture, a service must
be developed for node discovery. This distributed service lookup (DSL) acts like
a service registry whereby nodes; agent or environment nodes, register them-
selves as they come online. Once registered, the DSL acts like a distributed DNS
service whereby the location of nodes; their addresses, can be found by querying
the DSL. It’s important to note that this service does not act like an API gate-
way [30], as this would introduce a single point of failure into the architecture.
Instead, once node A queries the DSL for the location of node B, node A can
interact directly with node B without any intermediaries. This offers a more
decentralised and scalable solution. This DSL will be implemented as a smart
contract.

Communication A communication protocol is required for agent to environment
and agent to agent interaction. This protocol will also be used for interaction
with the DSL. This communication can take place on-chain as Solidity allows
for inter smart contract communication provided the smart contract address and
interface is known.

Oracles Oracles are data feeds that connect Ethereum to off-chain information.
They act as on-chain APIs which can be queried to get off-chain information
into smart contracts. With BCT, each node in the network must replay all
transactions in order to reach consensus. Off-chain data introduces potentially
variable data. For example, if a smart contract queried the price of the US dollar
from an off-chain data source in order to perform some logic, when other nodes
attempt to replay this transaction the price of the dollar may have changed
and they may compute different results as a consequence. If this happens, the
nodes in the network will not be able to agree on the networks current state,
breaking consensus. Oracles solve this problem by storing the initial returned
data on-chain. When other nodes replay this transaction they use the on-chain
immutable data rather than querying the off-chain data source again [19]. Event
based oracles rely on off-chain programs listening for events emitted from a
smart contract. Once an event is received, the off-chain oracle can complete
its computation and post the data back to the smart contract. This process is
asynchronous.

In this architecture, oracles will be used for off-chain computation and data
querying where needed. This allows this smart contract centric architecture to
be integrated with microservices and centralised systems as needed.



8 C. Deegan

Interfaces Each entity in the system should adhere to standardised interfaces.
This promotes interoperability. Provided they follow the standard agent inter-
face, new agents can be added to the simulation as needed. These new agents
may have different internal beliefs and follow different rules. However, given they
implement the standard agent interface they will be able to interact with one an-
other and their environment accordingly. Similarly, new environment node types
can be easily added to the simulation provided they adhere to the environment
node interface regardless of their underlying logic.

Traceability All entities should produce logs for traceability. Logs can be gath-
ered retrospectively from on-chain transaction data but also in real time from
events. These logs are an immutable reference to the state of the simulation at
any point in time.

5 Illustrating the Vision

In order to illustrate this new vision, I have created a toy problem based on a
city simulation where an agent must navigate through the city based on goals
it is presented with. An example of this distributed network in shown in Figure
1. The city is represented as a graph with nodes representing buildings, roads,
and junctions. Agents can move from one node to the next based on their plan.
Agents can also interact with a Sat Nav node. This is a specialised node which
acts as both an oracle and a distributed service lookup node as discussed in
section 4.

This example can be considered a hybrid simulation as it consists of multiple
sub-simulations that are connected together to create a distributed simulation.
Each of the environment nodes; roads, junctions, and buildings, are customizable.
For example, each road is given a specific road length which dictates how long
an agent must wait in that node until it can move on. Similarly, each junction
has an associated junction queue and is integrated with an external traffic light
management simulation.

Figure 2 shows a layered architecture diagram of the system created. Layer 1
consists of a React.JS web application which renders a visualisation of the city
network and the state of each of the agents within the simulation in realtime. A
screenshot of this visualisation can be seen later in Figure 7. This web application
can also be used to call smart contract functions in layer 4, via layers 2 and 3.
Layers 2 and 3 consist of an API layer and a communication layer in order
to communicate with the Ethereum Blockchain, which inhabits layer 4. Finally,
layer 5 consists of the nodes running the Ethereum network. During development
and testing this layer is simply a single node running locally.

To illustrate the concept, the example simulation is setup as follows:

{ Agents have initial beliefs about their current location in the network.
{ At any point in time, an agent can be given a goal location in the distributed

environment to navigate to.



Dissertation 9

Fig. 1. Representation of the road network being simulated

{ Based on this goal and the agent’s current location belief, agents interact
with a Sat Nav node. This specialised node is an oracle which interacts
with an off-chain Node.js application in order to compute the shortest path
between the agent’s current location and then agent’s goal location. The
Node.js application implements a breadth-first search in order to compute
this. Although in this example the Node.js application is a standalone ap-
plication, it could be incorporated as a microservice in a larger microservice
Hybrid Simulation architecture as described in [11].

{ The Sat Nav returns the optimal route to the agent.
{ Using this optimal route, the agent creates a plan. This plan is a list of

environment nodes that the agent must navigate through in order to arrive
at it’s goal location.

{ The Sat Nav node also acts as the Distributed Service Lookup as each envi-
ronment node registers itself with the Sat Nav when it comes online.

{ Once the agent has a plan, on each epoch, the agent can lookup the necessary
environment node from the DSL and interact directly with that node.

{ Given each environment node implements a standardised interface, the agent
can interact with each node despite the nodes underlying logic; road length,
junction queue, etc.

{ Once an agent completes their plan and arrives at their goal location, they
can now be given a new goal and the process can repeat.

A benefit of this approach is that other simulations that have no direct link
to the agents can also be integrated. These external simulations may be realised
through smart contracts or could be entirely different such as centralised services
or other forms of artificial intelligence. For example, a weather simulation may
be integrated into the network which could alter road conditions and thus change
navigation patterns.



10 C. Deegan

Fig. 2. Architecture of Ethereum Application



Dissertation 11

Fig. 3. Representation of the data structures for each node in Solidity

Fig. 4. Polymorphism offered by standardised interfaces



12 C. Deegan

5.1 Agents

The code in Listing 1.1 demonstrates how an agent can be created and added
to the network.

// function used to create an agent

function create(string memory _agentId, string memory _currentLocation)

public

{

Agent memory newAgent = Agent({

id: _agentId,

currentLocation: _currentLocation,

goalLocation: "",

activePlan: false,

goalLocationStatus: false,

plan: new string[](0),

counter: 0,

totalEpochs: 0

});

agents[_agentId] = newAgent;

agentIds.push(_agentId);

INode(getNodeAddress(_currentLocation)).enter(

_currentLocation,

_agentId

);

}

Listing 1.1. Create an Agent

Each agent must consist of a unique identifier and a starting location in the
network. Once an agent is given a goal, the goalLocation is updated along with
an activePlan Boolean and a plan. This plan is a route of nodes to traverse in
order to reach it’s goal destination. On each epoch every agent in the simulation
is executed by the epoch controller. This is a Node.JS application which calls
the epoch method of each agent. This method can be seen in Listing 1.2. As can
be seen at the end of the function, once the agent is created it communicates
directly with the environment node it is located within.

5.2 Environment Nodes

As can be seen in Figure 3, each environment node has a different underlying
data structure. However, polymorphism is achieved through each environment
node adhering to a standardised interface despite the different data structures
and underlying node logic. An example of this can be seen in Figure 4. The
interface for environment nodes can be seen in Listing 1.3.



Dissertation 13

// function called on each epoch

function epoch(string memory _agentId) public {

Agent storage agent = agents[_agentId];

if (!agent.activePlan && agent.goalLocationStatus) {

creatPlan(agent);

return;

} else if (!agent.activePlan) {

return;

} else {

agent.totalEpochs++;

ISatNav(satNavAddress).getOptimalMove(

_agentId,

agent.currentLocation,

agent.counter,

agent.plan

);

return;

}

}

Listing 1.2. Executing an agent

// contracts/INode.sol

// SPDX-License-Identifier: MIT

pragma solidity ^0.8.0;

interface INode {

function enter(string memory _nodeId, string memory _agentId)

external;

function exit(string memory _nodeId, string memory _agentId)

external;

function progress(string memory _nodeId, string memory _agentId)

external;

function getLength(string memory _nodeId) external returns (uint256);

}

Listing 1.3. Environment Node Interface

Listing 1.4 shows the necessary code required in order to add a new road
to the network. Each road must have a unique identifier, a length, and a list of
environment nodes it links to. Adding a junction or building to the network is
very similar and can be found in the attached resource [13].



14 C. Deegan

// function used to add a road to the network

function add(

string memory _roadId,

uint256 _length,

string[] memory _adjacents

) public {

Road memory newRoad = Road({

id: _roadId,

length: _length,

adjacents: _adjacents,

inhabitants: new string[](0)

});

roads[_roadId] = newRoad;

ISatNav(satNavAddress).addNode(

_roadId,

address(this),

_adjacents,

"road"

);

}

Listing 1.4. Adding a Road Node

5.3 Communication

Smart contracts can interact by calling functions directly in other smart con-
tracts provided the address is known. As discussed, the discovery of a node’s ad-
dress is facilitated by the Distributed Service Lookup (DSL). If an agent wishes
to communicate with one of the road nodes, it must first resolve the road smart
contract address using the DSL. After this, the agent can interact directly with
the road node. This results in a truly decentralised P2P architecture. An ex-
ample of this can be seen in listing 1.5 where the agent communicates directly
with the Sat Nav node in order to retrieve the shortest path between it’s current
location and goal location.

// function used to create a plan for an agent (public)

function creatPlanById(string memory _agentId) public {

Agent memory agent = agents[_agentId];

ISatNav(satNavAddress).shortestPathRequest(

agent.id,

agent.currentLocation,

agent.goalLocation

);

}

Listing 1.5. Agent to Environment Communication

Although not explicitly demonstrated, inter-agent communication can take
place the exact same way, given both environment nodes and agents are im-



Dissertation 15

plemented using smart contracts. The communication protocol with off-chain
entities can be seen in Figure 5 and listing 1.6

Fig. 5. Oracle communication protocol

5.4 Logs

Nodes emit important log messages which can be persisted for traceability. Given
that the Ethereum blockchain is public, anyone can build an application which
listens for logs produced by the simulation. These logs are immutable and provide
a trustless account of the events of the simulation. These logs could also be
consumed by other simulations, both centralised and decentralised, and reacted
to accordingly. A sample of these logs can be seen in Figure 6

6 Evaluation

6.1 Experimental Set-Up

In order to demonstrate the effectiveness of this architecture, three different
experiments were run. Each experiment was run on a MacBook Pro M1 laptop




